Welcome to STA 101!



The normal distribution (bell curve)
Notation: X ~ N(u, o).

Two parameters:
® 4 “mu.” The mean. Controls location of the middle;

® g: “sigma.” The standard deviation. Controls spread.

The 68-95-99.7 rule:
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Student’s t-distribution
Notation: X ~ t,.

One parameter:

® v: "nu.” The degrees of freedom.

Heavier tails than the normal distribution:
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Student’s t-distribution
Notation: X ~ t,.

One parameter:

® u: “nu.” The degrees of freedom

Closer to standard normal as DoF increase:
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Recap: one-sample t-test
One sample from normal distribution:

X1, X2, ey Xp ~ N(p, 0).

Point estimates:
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How do we do interval estimation and testing for 7
® We already know how to approximate with simulation;

® Assuming normality, can we do better than just approximate?



Recap: one-sample t-test

Since we assume

X1, X2y ey Xn ~ N(p, 0),

o )

X—p
N N (0, 1).

If instead we plug in the estimate of o, we have

it turns out that

and so
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Heavier tails reflect extra estimation uncertainty from &.



Recap: one-sample t-test
Based on the fact that
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you can construct an exact confidence interval
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and perform an exact test of

Ho : p = po
Ha = p # o

using this test statistic and null distribution:
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Today: beyond one-sample inference for a mean

We will consider other estimation problems based on data from the
normal distribution, but in all cases, the template is the same:

1. Start here:

estimate — true value

—— ~ tyf;
standard error

2. Get a confidence interval:

estimate + tffa/zstandard error.

3. Run a test based on this statistic and null distribution:

estimate — null value

— ~ tyf;
standard error

Depending on the problem, you have slightly different formulas for
estimate, standard error, and df. That's it.



Two-sample t-test

We want to compare the means of two independent samples:

X1y X2y ey Xy ~ N(pix, 0x)

Y1, Y25 oy Ynp ™~ N(/Ly, Uy)-

Point estimates:
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We can estimate diff = u, — p,, with diff =% — V.

What about interval estimation and testing?



Same starting place...
It turns out that

(F=9) = (1 —11y)
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If you knew the true variances, then
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But you don't, so
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The true degrees of freedom formula is ugly, but this works:

df = min{ny — 1, np — 1}.



Two-sample t-test
Starting from

You get an interval:
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You get a test of

based on
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Paired data

Original data
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Figure 21.1: Box plots of the tire tread data (in cm) and the brand of tire from which the original measure-
ments came.



