Welcome to STA 101!

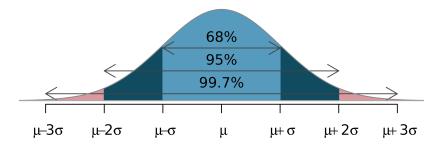
The normal distribution (bell curve)

Notation: $X \sim N(\mu, \sigma)$.

Two parameters:

- μ : "mu." The mean. Controls location of the middle;
- σ : "sigma." The standard deviation. Controls spread.

The 68-95-99.7 rule:



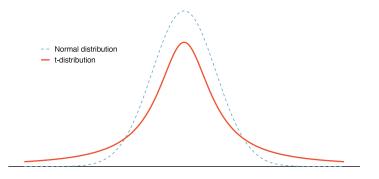
Student's t-distribution

Notation: $X \sim t_{\nu}$.

One parameter:

• ν : "nu." The degrees of freedom.

Heavier tails than the normal distribution:



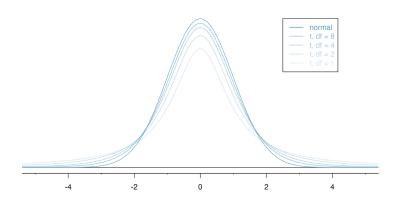
Student's t-distribution

Notation: $X \sim t_{\nu}$.

One parameter:

• ν : "nu." The degrees of freedom

Closer to standard normal as DoF increase:



Recap: one-sample t-test

One sample from normal distribution:

$$x_1, x_2, ..., x_n \sim N(\mu, \sigma).$$

Point estimates:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\hat{\sigma} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n_1} (x_i - \bar{x})^2}.$$

How do we do interval estimation and testing for μ ?

- We already know how to approximate with simulation;
- Assuming normality, can we do better than just approximate?

Recap: one-sample t-test

Since we assume

$$x_1, x_2, ..., x_n \sim N(\mu, \sigma),$$

it turns out that

$$\bar{x} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right),$$

and so

$$\frac{\bar{x}-\mu}{\sigma/\sqrt{n}}\sim \mathsf{N}\left(0,\,1\right).$$

If instead we plug in the *estimate* of σ , we have

$$\frac{\bar{x}-\mu}{\hat{\sigma}/\sqrt{n}}\sim t_{n-1}.$$

Heavier tails reflect extra estimation uncertainty from $\hat{\sigma}$.

Recap: one-sample t-test

Based on the fact that

$$\frac{\bar{x}-\mu}{\hat{\sigma}/\sqrt{n}}\sim t_{n-1},$$

you can construct an exact confidence interval

$$\bar{x} \pm t_{1-\alpha/2}^{\star} \frac{\hat{\sigma}}{\sqrt{n}},$$

and perform an exact test of

$$H_0: \mu = \mu_0$$
$$H_A: \mu \neq \mu_0$$

using this test statistic and null distribution:

$$\frac{\bar{x}-\mu_0}{\hat{\sigma}/\sqrt{n}}\sim t_{n-1}.$$

Today: beyond one-sample inference for a mean

We will consider other estimation problems based on data from the normal distribution, but in all cases, the template is the same:

1. Start here:

$$rac{ ext{estimate} - ext{true value}}{ ext{standard error}} \sim t_{df};$$

2. Get a confidence interval:

$$ext{estimate} \pm t_{1-lpha/2}^{\star} ext{standard error}.$$

3. Run a test based on this statistic and null distribution:

$$\frac{\texttt{estimate} - \texttt{null value}}{\texttt{standard error}} \sim t_{df};$$

Depending on the problem, you have slightly different formulas for estimate, standard error, and df. That's it.

Two-sample *t*-test

We want to compare the means of two independent samples:

$$x_1, x_2, ..., x_{n_1} \sim N(\mu_x, \sigma_x)$$

 $y_1, y_2, ..., y_{n_2} \sim N(\mu_y, \sigma_y).$

Point estimates:

$$\bar{x} = \frac{1}{n_1} \sum_{i=1}^{n_1} x_i \qquad \hat{\sigma}_x = \sqrt{\frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (x_i - \bar{x})^2}$$

$$\bar{y} = \frac{1}{n_2} \sum_{i=1}^{n_2} y_i \qquad \hat{\sigma}_y = \sqrt{\frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (y_i - \bar{y})^2}.$$

We can estimate diff $= \mu_x - \mu_y$ with $\widehat{\text{diff}} = \bar{x} - \bar{y}$.

What about interval estimation and testing?

Same starting place...

It turns out that

$$\frac{(\bar{x}-\bar{y})-(\mu_{\mathsf{X}}-\mu_{\mathsf{y}})}{\widehat{\mathsf{SF}}}\sim t_{\mathsf{df}}.$$

If you knew the true variances, then

$$\mathsf{SE} = \sqrt{\frac{\sigma_x^2}{n_1} + \frac{\sigma_y^2}{n_2}}.$$

But you don't, so

$$\widehat{\mathsf{SE}} = \sqrt{\frac{\hat{\sigma}_{\mathsf{x}}^2}{n_1} + \frac{\hat{\sigma}_{\mathsf{y}}^2}{n_2}}.$$

The true degrees of freedom formula is ugly, but this works:

$$df = \min\{n_1 - 1, n_2 - 1\}.$$

Two-sample *t*-test

Starting from

$$\frac{(\bar{x}-\bar{y})-(\mu_{\mathsf{X}}-\mu_{\mathsf{y}})}{\sqrt{\frac{\hat{\sigma}_{\mathsf{X}}^2}{n_1}+\frac{\hat{\sigma}_{\mathsf{y}}^2}{n_2}}}\sim t_{\mathsf{df}},$$

You get an interval:

$$(\bar{x}-\bar{y})\pm t_{1-\alpha/2}^{\star}\sqrt{\frac{\hat{\sigma}_{x}^{2}}{n_{1}}+\frac{\hat{\sigma}_{y}^{2}}{n_{2}}}.$$

You get a test of

$$H_0: \mu_x - \mu_y = 0$$

$$H_A: \mu_x - \mu_y \neq 0$$

based on

$$rac{ar{x}-ar{y}}{\sqrt{rac{\hat{\sigma}_{x}^{2}}{n_{1}}+rac{\hat{\sigma}_{y}^{2}}{n_{2}}}}\sim t_{df},$$

Paired data

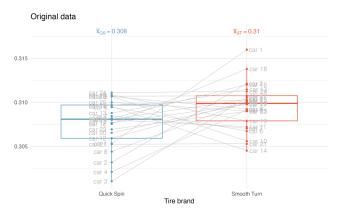


Figure 21.1: Box plots of the tire tread data (in cm) and the brand of tire from which the original measurements came.