Welcome to STA 101!

Final project proposal: due 5PM tomorrow

- Don't forget to pick a team name;
- Graded for completion;
- Compose the doc however you want;
- One member submits in Gradescope and tags everyone else;
- Use labs and OH to meet and get TA feedback;
- Make sure you link somewhere that I can directly download the data myself;
- You will receive detailed feedback from me about
 - technical advice;
 - which project is more interesting and/or feasible.

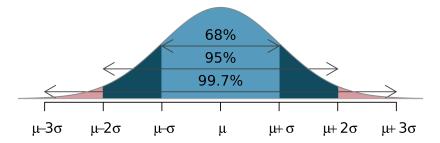
The normal distribution (bell curve)

Notation: $X \sim N(\mu, \sigma)$.

Two parameters:

- μ: "mu." The mean. Controls location of the middle;
- σ : "sigma." The standard deviation. Controls spread.

The 68-95-99.7 rule:



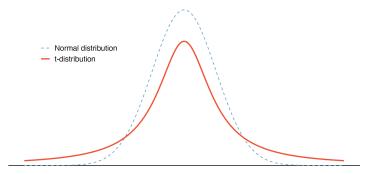
Student's t-distribution

Notation: $X \sim t_{\nu}$.

One parameter:

• ν : "nu." The degrees of freedom.

Heavier tails than the normal distribution:



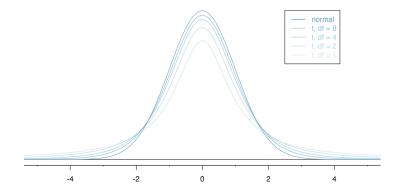
Student's t-distribution

Notation: $X \sim t_{\nu}$.

One parameter:

• ν : "nu." The degrees of freedom

Closer to standard normal as DoF increase:



Estimation problem: mean of normal data

Data: a list of numbers $x_1, x_2, ..., x_n$;

Unknown population: $N(\mu, \sigma)$.

Point estimate: sample average

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^n x_i.$$

To do statistics, we must access the sampling distribution of \bar{x} . We have seen two methods for doing this:

- histogram approximation via the bootstrap;
- normal approximation: $N\left(\bar{x}, \hat{SE} = \hat{\sigma}/\sqrt{n}\right)$.

Forget approximation. With normal data, we can do the real thing.

Sampling distribution of the sample average

The data are random:

$$x_1, x_2, ..., x_n \sim N(\mu, \sigma).$$

The average is a function of the data, so it is random too:

$$\bar{x} \sim \mathsf{N}\left(\mu, \, \frac{\sigma}{\sqrt{n}}\right).$$

This is its sampling distribution

The confidence interval formulas

We've seen several confidence intervals for μ :

 $\bar{x} \pm z^* \frac{\sigma}{\sqrt{n}}$ correct when σ known

 $\bar{x} \pm z^* \frac{\hat{\sigma}}{\sqrt{n}} \approx \text{correct when } n \text{ large}$

$$ar{x} \pm t^{\star} rac{\hat{\sigma}}{\sqrt{n}}$$
 correct

Where do these come from?

Standardization: subtract off the mean

$$\bar{x} \sim \mathsf{N}\left(\mu, \, \frac{\sigma}{\sqrt{n}}\right)$$

then

$$\bar{x} - \mu \sim \mathsf{N}\left(\mathbf{0}, \, \frac{\sigma}{\sqrt{n}}\right).$$

So you make the mean zero.

Standardization: divide by the standard error

$$\bar{x} \sim \mathsf{N}\left(\mu, \, \frac{\sigma}{\sqrt{n}}\right)$$

then

lf

$$rac{ar{x}}{\sigma/\sqrt{n}} \sim \mathsf{N}\left(rac{\mu}{\sigma/\sqrt{n}}, 1
ight).$$

So you make the standard deviation 1.

Standardization: putting it together

$$\bar{x} \sim \mathsf{N}\left(\mu, \, \frac{\sigma}{\sqrt{n}}\right)$$

then

$$rac{ar{\mathbf{x}}-\mu}{\sigma/\sqrt{n}}\sim\mathsf{N}\left(0,\,1
ight).$$

So you make the mean zero and the standard deviation 1.

Reminder: standard normal quantiles

Reminder: standard normal quantiles

coverage	α	1-lpha/2	$z_{1-lpha/2}^{\star}$
80%	0.2	0.9	≈ 1.28
90%	0.1	0.95	pprox 1.64
95%	0.05	0.975	pprox 1.96
99%	0.01	0.995	pprox 2.58

Deriving the confidence intervals

Since

$$rac{ar{x}-\mu}{\sigma/\sqrt{n}}\sim \mathsf{N}(0,\,1),$$

it must be that

$$\mathsf{Prob}\left(-z^\star_{1-\frac{\alpha}{2}} \quad < \quad \frac{\bar{x}-\mu}{\sigma/\sqrt{n}} \quad < \quad z^\star_{1-\frac{\alpha}{2}}\right) = 1-\alpha.$$

Now let's eat some spinach...

Power through, people

(Goal: get μ alone by itself in the middle.)

 $-z_{1-\frac{\alpha}{2}}^{\star} < \frac{\overline{x}-\mu}{\sigma/\sqrt{n}} < z_{1-\frac{\alpha}{2}}^{\star}$

implies this:

This

$$-z_{1-\frac{\alpha}{2}}^{\star}\frac{\sigma}{\sqrt{n}} < \bar{x}-\mu < z_{1-\frac{\alpha}{2}}^{\star}\frac{\sigma}{\sqrt{n}}.$$

We multiplied by the positive number σ/\sqrt{n} everywhere.

It's almost over

(Goal: get μ alone by itself in the middle.)

This

$$-z_{1-\frac{\alpha}{2}}^{\star}\frac{\sigma}{\sqrt{n}} < \overline{\mathbf{x}}-\mu < z_{1-\frac{\alpha}{2}}^{\star}\frac{\sigma}{\sqrt{n}}$$

implies this:

$$-\bar{\mathbf{x}} - z_{1-\frac{\alpha}{2}}^{\star} \frac{\sigma}{\sqrt{n}} < -\mu < -\bar{\mathbf{x}} + z_{1-\frac{\alpha}{2}}^{\star} \frac{\sigma}{\sqrt{n}}.$$

We subtracted \bar{x} everywhere.

Remember, it wasn't on the exam

(**Goal**: get μ alone by itself in the middle.)

This

$$-\bar{x} - z_{1-\frac{\alpha}{2}}^{\star} \frac{\sigma}{\sqrt{n}} < -\mu < -\bar{x} + z_{1-\frac{\alpha}{2}}^{\star} \frac{\sigma}{\sqrt{n}}$$

implies this:

$$\bar{x} + z_{1-\frac{\alpha}{2}}^{\star} \frac{\sigma}{\sqrt{n}} > \mu > \bar{x} - z_{1-\frac{\alpha}{2}}^{\star} \frac{\sigma}{\sqrt{n}}.$$

We multiplied by -1 everywhere, which means we had to flip the direction of all the inequalities.

Done!

Because

$$\mathsf{Prob}\left(-z^{\star}_{1-\frac{\alpha}{2}} \quad < \quad \frac{\bar{x}-\mu}{\sigma/\sqrt{n}} \quad < \quad z^{\star}_{1-\frac{\alpha}{2}}\right) = 1-\alpha,$$

it must be that

$$\operatorname{Prob}\left(\bar{x}-z_{1-\frac{\alpha}{2}}^{\star}\frac{\sigma}{\sqrt{n}} \quad < \quad \mu \quad < \quad \bar{x}+z_{1-\frac{\alpha}{2}}^{\star}\frac{\sigma}{\sqrt{n}}\right)=1-\alpha.$$

So the interval (L, U) with bounds

$$L = \bar{x} - z_{1-\frac{\alpha}{2}}^{\star} \frac{\sigma}{\sqrt{n}}$$
$$U = \bar{x} + z_{1-\frac{\alpha}{2}}^{\star} \frac{\sigma}{\sqrt{n}}$$

is an exact 100 \times (1 – $\alpha)\%$ confidence interval for $\mu.$

But we don't know σ , so who cares?

We have

$$\bar{x} \pm z_{1-\frac{\alpha}{2}}^{\star} \frac{\sigma}{\sqrt{n}}.$$

To make it operational, we blithely plug in $\hat{\sigma}.$

• The central limit theorem (and some other things...) gives us permission to do this when *n* is "big enough", but for small or medium *n*, all of the math we did is just plain wrong, and this interval will *under cover*:

$$\bar{x} \pm z_{1-\frac{\alpha}{2}}^{\star} \frac{\hat{\sigma}}{\sqrt{n}}.$$

How do we fix this?

Revisiting the standardized average

We started with this:

$$rac{ar{x}-\mu}{\sigma/\sqrt{n}}\sim {\sf N}(0,\,1).$$

If you plug in $\hat{\sigma}$, it turns out that

$$\frac{\bar{x}-\mu}{\hat{\sigma}/\sqrt{n}}\sim t_{n-1}.$$

Why?

- \bar{x} and $\hat{\sigma}$ are both random (depend on the random sample);
- When you go from one source of randomness on the left to two, things are "more random," and the tails get heavier.

Finite-sample interval for mean of normal data

If you start from

$$\frac{\bar{x}-\mu}{\hat{\sigma}/\sqrt{n}}\sim t_{n-1},$$

the same steps from before give an exact $100 \times (1 - \alpha)\%$ confidence interval for the mean of normal data:

$$ar{x} \pm t^{\star}_{1-rac{lpha}{2}} rac{\hat{\sigma}}{\sqrt{n}}.$$

This does not assume you know σ , and it has correct coverage no matter what *n* is.

Mathematical facts you are asked to take on faith

1. Sampling distribution of sample average of normal data:

$$ar{\mathbf{x}} \sim \mathsf{N}\left(\mu, \, rac{\sigma}{\sqrt{n}}
ight)$$
 ;

2. Sampling distribution of "realistically" standardized average:

$$rac{ar{x}-\mu}{\hat{\sigma}/\sqrt{n}}\sim t_{n-1};$$

3. The central limit theorem.

A sliver of STA 240: using calculus to prove these things for real.

Whence the *t*-test?

Data:
$$x_1, x_2, ..., x_n \sim N(\mu, \sigma)$$

Point estimate:
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
.

Hypotheses:

$$H_0: \mu = \mu_0$$
$$H_A: \mu \neq \mu_0.$$

Null distribution: if the null is true, we know that

$$rac{ar{x}-\mu_0}{\hat{\sigma}/\sqrt{n}}\sim t_{n-1}.$$

Instead of simulations and histograms and approximations, just use Student's t as the null distribution. Compute p-value based on that and proceed business-as-usual.

One-sample *t*-test

- 1. Collect data set of size n;
- 2. Compute \bar{x} , $\hat{\sigma}$, and **test statistic**

$$\frac{\bar{x}-\mu_0}{\hat{\sigma}/\sqrt{n}}$$

- 3. Locate the observed statistic under the t_{n-1} curve:
- 4. Compute *p*-value and decide:
 - if *p*-value < α, reject null;
 - if *p*-value $\geq \alpha$, fail to reject null;