
Welcome to STA 101!



Recap: hypothesis testing
in

seven questions



What is an hypothesis test trying to do?

Silly example: flipping an unfamiliar coin.

Competing claims (hypotheses):

H0 : p = 0.5 (coin is fair)

HA : p ̸= 0.5 (coin is unfair)

What if: we flip the coin a bunch of times and get 51% heads,
which is not exactly equal to 50%. So what?

Two possibilities:

• Fair coin. We just got 51% as a quirk of the random sampling;

• Unfair coin. 51% ̸= 50%. Anomaly detected! Case closed!

An hypothesis test is trying to tell the difference between these.



If the null were true, what would the world look like?

The null distribution is a hypothetical sampling distribution that
visualizes how your estimates would vary across different random
samples if the null were true.

If the null were true and random sampling was all that was going
on, this would be the menu of options.



What does the world actually seem to look like?
That’s your point estimate. The actual answer from actual data:

• If the actual estimate is toward the middle of the null
distribution, maybe you cannot rule out the null;

• If the actual estimate is out in the tails of the null distribution,
maybe the null is totally bogus and should be rejected.



How do we quantify the difference between the
hypothetical and reality?

Calculate the p-value: the probability, assuming the null is true, of
an estimate even more extreme than the one you actually got.

• “big” p-value: your estimate is not out of the ordinary in a
world where the null is true;

• “small” p-value: your estimate is unlikely if the null is true.



How do we decide if the p-value is small enough to reject?

Set a cut-off 0 < α < 1 called the discernibility level and do this:

• if p-value < α, Reject H0;

• if p-value >= α, Fail to reject H0.

It’s very crude and unglamorous.



How do we pick the discernibility level?

Pick α to balance the risk of two types of errors:

Your decision

Reject H0 Fail to reject H0

The H0 true Type 1 error Correct!

truth H0 false Correct! Type 2 error

• α ↑ =⇒ easier to reject H0 =⇒ Type 1 ↑ Type 2 ↓

• α ↓ =⇒ harder to reject H0 =⇒ Type 1 ↓ Type 2 ↑

• Typical choices: α = 0.01, 0.05, 0.10, 0.15.



How does adjusting α change the error rates?



How does adjusting α change the error rates?



One pathetic slide about power

Power is the probability of rejecting the null hypothesis when it is
false (i.e. of avoiding a Type II error):

Power = Prob(reject H0 |H0 is false).

It is the chance that a study will detect a deviation from the null if
one really exists. We want this to be as big as possible.

Power is a function of

• Sample size;

• Deviation from the null one hopes to detect;

• Variability in your data;

• The discernibility level you choose.

Big ol’ question: subject to constraints like budget, how should I
design my study, and how much data should I collect, to make
power as big as possible? Very important, but beyond our course...



Cardinal Sins in Statistics, Part 2 of 91

Thou shalt not interpret the p-value as the probability that the null
hypothesis is true. It is the probability of an extreme result

assuming the null is true.



Cardinal Sins in Statistics, Part 3 of 107

Thou shalt not confuse statistical discernibility with substantive
importance.

What we say in STA 101 What you will hear elsewhere

discernibility level “significance” level

statistical discernibility statistical “significance”

Traditionally, if p-value < α, we reject H0 and call the result
“statistically significant”. But this wording often misleads people
into thinking the results are just plain significant, in a substantive
sense. Wroooooong.



Example

The truth: a coin flip comes up heads with probability 0.499.

Hypotheses:

H0 : Prob(heads) = 0.5

HA : Prob(heads) ̸= 0.5

Fact: H0 is literally false. 0.5 ̸= 0.499.

Result: you flip the coin 10,000,000 times and get a p-value that’s
practically zero, and correctly reject H0. So what?

Punchline: the machinery of statistics cannot tell you if your
results are “meaningful” and “important”. It can only tell you if
the results are likely or not under random sampling.

statistical “significance” ̸= importance



Venial Sins in Statistics, Part 1 of 284

Thou shalt not accept the null hypothesis, even if the p-value is
huge. You only “fail to reject” the null hypothesis.

Example: when a verdict is read out in court, it isn’t “guilty” or
“innocent.” It’s “guilty” or “not guilty,” which is very different.



Notice a pattern?

Statistical questions...

• Q: Does the linear model fit well?

A: Look at the spread of the residual distribution.

• Q: Is the unknown parameter reliably estimated?

A: Look at the spread of the sampling distribution.

• Q: Do we have sufficient evidence to reject the null?

A: Look at the spread of the null distribution.

We typically represent a distribution with a histogram, and we
measure spread with variance or standard deviation.

Make sure you understand these things! It’s Chapter 5.



Into the weeds: how is the null distribution simulated?

Population
assuming

null is true :
↙ ↙ · · · ↘ ↘

Hypothetical
samples:

· · ·

↓ ↓ · · · ↓ ↓

Estimates: p̂(1) p̂(2) · · · p̂(b−1) p̂(b)

↘ ↘ · · · ↙ ↙

Null
distribution:



Sampling distribution of proportion from coin flip data



Sampling distribution of proportion from coin flip data



Sampling distribution of proportion from coin flip data



Sampling distribution of proportion from coin flip data



Sampling distribution of proportion from coin flip data



Sampling distribution of proportion from coin flip data



Sampling distribution of proportion from coin flip data



Sampling distribution of proportion from coin flip data



Three observations

• the sampling distribution is centered on the true value;

• as the sample size (number of flips) grows, the spread
decreases;

• as the sample size grows, looks more and more like a bell
curve.

This is not an accident.



The central limit theorem (CLT)

Theorem: As your sample size gets bigger and bigger, the
sampling distribution of a statistic (sample mean, proportion,
difference, etc) will look more and more like the bell curve.

Proof.

Take STA 240!



Who cares?

In (classical) statistics, the sampling distribution is queen:

• (Interval estimation) we need to approximate the sampling
distribution in order to compute a confidence interval;

• (Hypothesis testing) we need to approximate the null
distribution in order to compute a p-value.

How do we approximate a sampling distribution?

• Simulation: bootstrap, permutation, generate(...), etc.

• Normal approximation: assume the sampling distribution is
roughly a bell curve, and use what we know about that.

The CLT gives theoretical justification for the second strategy.



The normal distribution (bell curve)

Notation: X ∼ N(µ, σ).

Two parameters:

• µ: “mu.” The mean. Controls location of the middle;

• σ: “sigma.” The standard deviation. Controls spread.

The 68-95-99.7 rule:


