
Welcome to STA 101!



Hypothesis testing



Example 1: is a mystery coin fair?

Setting: A carnival barker digs an unfamiliar coin out of his
pocket and invites you to flip it as many times as you want.

Question: is the coin fair?

Hypotheses: two competing claims...

• H0 : Prob(flipping heads) = 0.5;

• HA : Prob(flipping heads) ̸= 0.5

Data:

• You flip it 10 times, and get 60% heads. Is it fair?

• You flip it 50 times, and get 56% heads. Is it fair?

• You flip it 1,000,000 times and get 56% heads. Is it fair?



Example 2: is a medical consultant better than average?

Setting: To avoid complications, some prospective organ donors
hire a medical consultant to advise on aspects of the surgery. The
average complication rate for liver donor surgeries in the US is
about 10%.

Question: does the consultant I am interviewing have a different
complication rate than the US average?

Hypotheses: two competing claims...

• H0: Prob(complications with this consultant) = 0.1;

• HA: Prob(complications with this consultant) ̸= 0.1.

Data: she has advised 62 liver donors, and 3 of them (4.8%) have
had complications. Is she better than average?



Example 3: is yawning contagious?

Setting: the Mythbusters randomly split people into two groups:

• (control) didn’t have a yawner near them;

• (treatment) had a yawner near them.

Question: are you more likely to yawn if someone yawns near you?

Hypotheses: two competing claims...

• H0: Prob(yawning near a yawner) = Prob(yawning alone);

• HA: Prob(yawning near a yawner) > Prob(yawning alone).

Data:

• proportion of yawners in the treatment group: 10/34 ≈ 0.29;

• proportion of yawners in the control group: 4/16 = 0.25;

• difference: 0.2941− 0.25 ≈ 0.04.



Hypothesis testing

Two competing claims about the population...

• Null (or baseline) hypothesis: “there’s nothing going on;”

• Alternative hypothesis: “there’s something going on.”

In each example...

• we have evidence (data) in the form of a random sample;

• we have a best guess (point estimate);

• but there is uncertainty (eg. do I have enough data?);

• So what’s the answer?

Which claim are the data most consistent with?

Do we have enough information to tell?

Could it be that our results are just due to chance?



The main idea

Setting: you have data and a best guess;

Hypothetical: assume the null is true;

Question: in a hypothetical world where the null is true, how
crazy would it be to observe the data you observed?

Decision:

• if the data would be crazy, then the null must be bogus.
Reject the null in favor the alternative.

• if the data would not be out of the ordinary, then you cannot
rule the null out. You fail to reject the null.



Hypotheses

H0 : p = p0

HA : p ̸= p0

• p is the true but unknown population parameter. You’re
trying to guess its value with data;

• In all the examples today, p is an unknown probability (a
proportion or percentage), hence the notation p;

• p0 is the null or hypothesized value. It’s the “baseline” value
you are testing for;

• H0 is the status quo. “nothing special is going on;”

• HA is the alternative. “something is going on;”

• “Innocent versus guilty.”



Types of alternatives

Two-sided alternatives:

H0 : p = p0

HA : p ̸= p0

One-sided alternatives:

H0 : p = p0

HA : p > p0

H0 : p = p0

HA : p < p0



Sooo...what’s the conclusion?



The null distribution

• hypothetical sampling distribution of the estimate assuming
the null were true;

• visualizes the “menu of options” for the estimate in a world
where the null is true.

• if the estimate you actually got would be “off the menu”, the
null was probably silly to begin with.

• if the estimate you actually got could be “on the menu,” then
the null is still in play.



The null distribution

Population
assuming
null is true:

↙ ↙ · · · ↘ ↘

Hypothetical
samples:

· · ·

↓ ↓ · · · ↓ ↓

Estimates: p̂(1) p̂(2) · · · p̂(b−1) p̂(b)

↘ ↘ · · · ↙ ↙

Null
distribution:



What if the null distribution looked like this?

Reality (the estimate) and the hypothetical (the null distribution)
look incompatible. Reject the null hypothesis.



What if the null distribution looked like this?

What would you conclude here?



What if the null distribution looked like this?

What would you conclude here?



What if the null distribution looked like this?

What would you conclude here?



Sooo...what’s the conclusion?

If our estimate is far out in the tails of the null distribution, this
suggests the null was a bunch of malarkey from the start.

What do we mean by “far out in the tails”? Compare p-value to a
threshold α called the discernibility level:

• if p-value < α, Reject H0;
• if p-value >= α, Fail to reject H0.



p-value
“If the null were in fact true, what’s the chance I would get results
even crazier than what I actually got.”



p-value

• Assuming the null is true, the p-value is the probability of get
a result as extreme or more extreme than the one you actually
got;

• If this probability is “large”, your estimate feels right at home
with the null. Fail to reject;

• If this probability is “small,” the estimate and the null are
incompatible. Reject the null in favor of the alternative.

Question: we’ve converted the question of “how close is close” to
a question of “how small is small.” Is this progress?

Follow-up: how do you decide the cut-off?


