
Welcome to STA 101!



Statistics is a confrontation with uncertainty.

Statistics confronts uncertainty by quantifying it.



Data analysis

Transforming messy, incomplete, imperfect data into knowledge:

ggplot =⇒
|> =⇒

Statistical inference

Quantifying our uncertainty about that knowledge:

• Question: What’s the number?

• Answer: best-guess±margin-of-error



The book example from the primer

https://sta101-f24.github.io/computing/computing-mlr.html


One model, but two lines?



One model, but two lines?

We fit a model with a numerical predictor (x1) and a categorical
predictor (x2) with two level:

ŷ = β̂0 + β̂1x1 + β̂2x2.

The categorical predictor works like this:

x2 =

{
0 if book is hardback

1 if book is paperback.

This essentially nests two models:

ŷ =

{
β̂0 + β̂1x1 if book is hardback

β̂0 + β̂1x1 + β̂2 if book is paperback.

The intercept shifts.

(JZ: In the book example, β̂2 is negative, so it shifts the line down.)



What are models good for?

“All models are wrong but some are useful.”

• We would love to use models to draw causal conclusions from
messy, observational data, but this is very very difficult;

• A slightly easier task that some models are very good at is
prediction...



Prediction



Prediction



Prediction



Prediction



Prediction, summary
Collect data:

(x1, y1), (x2, y2), (x3, y3), ..., (xn, yn)

Fit a model:

ŷ = β̂0 + β̂1x

Prediction: Someone hands you an x⋆ you’ve never seen before.
What’s your best guess at what y is going to be?

ŷ⋆ = β̂0 + β̂1x
⋆.

Historical Data + Model = Predictions you can use to aid
decision making in an uncertain world.

(JZ: In the book example, you use the model to guesstimate the weight of a book you are about to manufacture.
Maybe this allows you to preallocate the budget for the shipping costs. You can’t wait until the book is
manufactured to decide on your budget. It must be done now, and the data and model help you predict and resolve
some of your uncertainty about future costs.)



How well does a linear model fit the data?

Question: can we quantify this?

(JZ: Visually, fit would seem to have something to do with how far the data points are from the fitted line. In
other words, how big the residuals are. So we need to talk about residuals...)



Recall the residuals

ŷi = β̂0 + β̂1xi (fitted model)

ε̂i = yi − ŷi (residuals)



How variable are the residuals compared to the data?

Idea: Fit a model, and compare histogram of {y1, y2, ..., yn} to
histogram of {ε̂1, ε̂2, ..., ε̂n}:

• Variation in yi is what we seek to “explain” with a model;

• Variation in ε̂i is the leftover that our model does not explain;

• If there’s not a lot of leftover, we did pretty well.



How variable are the residuals compared to the data?

Idea: Fit a model, and compare histogram of {y1, y2, ..., yn} to
histogram of {ε̂1, ε̂2, ..., ε̂n}.

• Variation in yi is what we seek to “explain” with a model;

• Variation in ε̂i is the leftover that our model does not explain;

• If there’s not a lot of leftover, we did pretty well:

(JZ: If the residual distribution is a point mass at zero with no variation, we explained everything. Winner! If the
residual distribution looks identical to the data distribution, we explained nothing. Drat!)



How do we quantify this comparison?

Summarize variation with a measure of spread and compare:

fit quality = proportion of variation explained

=
explained variation

total data variation

=
total data variation - unexplained variation

total data variation

=
spread of yi − spread of ε̂i

spread of yi
.



How do we measure spread?

With the variance:

the average squared distance from the mean.

“how far are the data, typically, from their center?”

Left: data are typically close to the center (low variance)

Right: data are typically farther from the center (higher variance).



How do we measure spread?
With the variance:

the average squared distance from the mean.

“how far are the data, typically, from their center?”

Recall that the mean is the same thing as the average:

ȳ =
y1 + y2 + y3 + ...+ yn

n
=

1

n

n∑
i=1

yi .

So in formulas...

var(yi ) =
(y1 − ȳ)2 + (y2 − ȳ)2 + ...+ (yn − ȳ)2

n

=
1

n

n∑
i=1

(yi − ȳ)2

= sd(yi )
2. (“variance is standard deviation squared”)

And similarly for var(ε̂i )



Back to measuring fit

Before:

fit quality = proportion of variation explained by the model

=
spread of yi − spread of ε̂i

spread of yi
.

Now:

R2 =
var(yi )− var(ε̂i )

var(yi )

= 1− var(ε̂i )

var(yi )
.

R2 is called the coefficient of determination.



Facts about R2

• var(yi ) is always bigger than var(ε̂i ), so R2 is a number
between zero and one;

• If var(ε̂i ) = 0, then the model explained everything. The fit is
perfect (poifect!), and R2 = 1;

• If var(ε̂i ) = var(yi ), then the model explained absolutely
nothing and R2 = 0;

• Most of the time we are somewhere in between, and we can
use R2 to quantify the quality of a model’s fit and rank
competing models.



Adjusted R2

Possible use of R2:

• decide which covariates to include in a big multiple regression.
The set of covariates that delivers the highest R2 is the
winner;

Problem:

• R2 has a nasty mathematical property that it always goes up
every time you add any covariate to the model, even if that
covariate is silly and useless;

Goal:

• We want a measure of fit that will not give all variables a
participation trophy just for showing up, but actually rewards
honest-to-goodness improvements in fit;

Solution:

• Adjusted R2.



Variable selection: backward elimination

Start with the full model (the model that includes all potential
predictor variables). Variables are eliminated one-at-a-time from
the model until we cannot improve the model any further.

Procedure:

1. Start with a model that has all predictors we consider and
compute the adjusted R2.

2. Next fit every possible model with 1 fewer predictor.

3. Compare adjusted R2s to select the best model (highest
adjusted R2) with 1 fewer predictor.

4. Repeat steps 2 and 3 until adjusted R2 no longer increases.



Variable selection: forward stepwise

Forward stepwise regression is the reverse of the backward
elimination technique. Instead, of eliminating variables
one-at-a-time, we add variables one-at-a-time until we cannot find
any variables that improve the model any further.

Procedure:

1. Start with a model that has no predictors.

2. Next fit every possible model with 1 additional predictor and
calculate adjusted R2 of each model.

3. Compare adjusted R2 values to select the best model (highest
adjusted R2) with 1 additional predictor.

4. Repeat steps 2 and 3 until adjusted R2 no longer increases.


