
Welcome to STA 101!



Statistics is a confrontation with uncertainty.

Statistics confronts uncertainty by quantifying it.



Data analysis

Transforming messy, incomplete, imperfect data into knowledge:

ggplot =⇒
|> =⇒

Statistical inference

Quantifying our uncertainty about that knowledge:

• Question: What’s the number?

• Answer: best-guess±margin-of-error



Recap: simple linear regression

Concisely summarize the observed association between two
variables using a line of best fit:

The slope and intercept estimates β̂0, β̂1 are chosen to minimize
the sum of squared deviations from the line (residuals).



Interpreting the coefficient estimates in simple regression

• The sign of β̂1 tells you if the variables are positively or
negatively correlated (or not at all, if slope = 0);

• The magnitude of β̂1 tells you something about the strength
of the general association.

Note: The magnitude does not tell you about the strength of
the correlation per se. I misspoke in this class.



Beware: correlation is not the only kind of association...

The best fit line says x and y are
not correlated. Maybe so, but
there is clearly some association.

ABV: Always Be Visualizing



Example: height vs. wingspan



Example: height vs. wingspan

Source: http://www.jaspe.ac.me/clanci/JASPE_July_2018_Monson_3-8.pdf

http://www.jaspe.ac.me/clanci/JASPE_July_2018_Monson_3-8.pdf


Clarification: notation

Population: The “idealized” linear regression model:

yi = β0 + β1xi + εi .

β0, β1, and εi are unknown. Revealed only with infinite data.

Sample: You collect a finite sample (x1, y1), (x2, y2), ..., (xn, yn)
and calculate the fitted regression model:

ŷi = β̂0 + β̂1xi ,

ε̂i = yi − ŷi .

Hopefully: As your sample size n gets bigger, your estimates
β̂0, β̂1 get closer and closer to the ideal, population values β0, β1.



The population version



The sample version



Clarification: why squared error?

Why do we minimize
n∑

i=1

(yi − ŷi )
2,

and not
n∑

i=1

(yi − ŷi ),

or
n∑

i=1

|yi − ŷi | ?



Why not
n∑

i=1

(yi − ŷi)?

Because it’s trash.



Why choose squared error?

• Squared error is computationally convenient (take my word for it);

• Squared error is intimately related to the mean, while absolute
error is intimately related to the median (take my word for it);

• Squared error plays nice with the geometry of Euclidean space:

d(A, B) =
√

(x1 − x2)2 + (y1 − y2)2

• Squared error plays nice with the bell curve:

p(x) ∝ exp
(
− 1

2σ2 (x − µ)2
)



But absolute error is still no joke!

Squared error gives increasingly more weight to data points that
are far away from the others (outliers); absolute error is more chill.



“Well-behaved” data: these are basically the same

Regression based on absolute error may be “more robust.”



Add a single outlier...

Regression based on absolute error may be “more robust.”



For the upteenth time...



Square vs. absolute error: bottom line

As I said last time, squared error and absolute error
are “first class citizens” from a conceptual point of
view. They both have pros and cons, and you may
prefer one or the other depending on what you are
trying to do.

But throughout this course (and most courses you
might take), we focus on the squared error version.



Today’s topic

Multiple linear regression.

Goal

Study the association between multiple variables (not just two).

Subtext

Assess the causal impact of one variable on another while
accounting for other factors.

Warning

Association alone does not imply causation.



Linear regression with two predictors

y = β0 + β1x1 + β2x2 + ε.

• y : outcome or response variable;

• x1, x2: predictors, covariates, regressors, features, ...;

• β0, β1, β2: coefficients or parameters;

• ε: error or residual ;

This model predicts y given x1 and x2.



Recall: stock prices (first quarter of 2020)

ÂAPL = β̂0︸︷︷︸
1.52

+ β̂1︸︷︷︸
0.437

MSFT



Include a third stock (IBM)

Model:
ÂAPL = β̂0︸︷︷︸

31.24

+ β̂1︸︷︷︸
−0.091

MSFT + β̂2︸︷︷︸
0.458

IBM

2 predictors + 1 outcome = 3 dimensions:

The line of best fit becomes a plane of best fit. Already hard to
visualize. Becomes impossible in higher dimensions.



Multiple linear regression

y = β0 + β1x1 + β2x2 + β3x3 + ...+ βpxp + ε.

• y : outcome or response variable;

• x1, x2, ..., xp: predictors, covariates, regressors, features, ...;

• β0, β1, β2, ..., βp: coefficients or parameters;

• ε: error or residual ;

This model predicts y given x1, x2, x3, ..., xp.

The “concise” numerical summary is a hyperplane of best fit,
which human beings cannot visualize.



Why do we need more predictors?



Why do we need more predictors?


